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Two principles:

Shift away from machine details

Emphasis on correctness over efficiency 
(ie, focus on program design)
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What’s Wrong with
Machine-Oriented Languages?

machine arithmetic, pointers and
memory addresses, even i/o

• Make students waste time on 
unimportant and uninteresting details

• Force students to confront issues they 
are not prepared for

• and ...
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What Computer Science
is Not About

The computer!

Just as biology isn’t “microscope science” 
and writing isn’t “pen science” ...



What’s This About
Program Design?



Why Am I Here?

• The TeachScheme! Project: Outreach 
program hosted by six universities

• Specially designed for high schools

• Provides all material -- books, software, 
etc -- free of charge



What Teachers Experience



K.I.S.S.
Keep It Simple Syntactically



K.I.S.S.
Keep It Simple Syntactically

C++/Pascal

10% Problem-solving vs   90% Syntax



K.I.S.S.
Keep It Simple Syntactically

C++/Pascal

10% Problem-solving vs   90% Syntax

Scheme

90% Problem-solving vs   10% Syntax
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The Golden Rule of
Scheme Syntax

(                                                 )Operation List-of-Arguments

or

(   Operation      Arg1   Arg2 . . .  Argn )
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Example #2 (cont’d)
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Example #3 (cont’d)

f ( x ) = x + 5

(  define  ( f  x )
(  +  x  5  )  )
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Algebra vs Scheme vs Pascal

f (x) =  x + 5

Algebra

( define( define ( f   x )

(( + x  5 ) )) )

Scheme

ProgramProgram f (Input, Output) (Input, Output) ;;

VarVar

x x :: Integer Integer ;;

BeginBegin

ReadlnReadln ( x ) ;;

WritelnWriteln (( x + 5 ))

End End ..

Pascal



Design



D3:  Data Drive Design
(A Non-Numeric Example)

Consider program guest, which determines

whether a friend’s name is in a party’s

invitation list.
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Scheme

( define  ( guest  name  list )

( cond
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otherwise
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Scheme

( define  ( guest  name  list )

( cond

( ( empty?  list ) ‘no )

( ( equal?   name  ( first  list ))     ‘yes )

(   else                                       ( guest name  ( rest  list ))   ) ))      

guest ( name, list ) =

no if  list is empty 

yes if  name = first ( list )

guest ( name, rest ( list )) otherwise

Algebra



Did You Notice?



Scheme

Algebra

( define  ( guest  name  list )

( cond

( ( empty?  list ) ‘no )

( ( equal?   name  ( first  list ))     ‘yes )

(   else                                       ( guest  name  ( rest  list )) ) ))      

guest ( name, list ) =

no if  list is empty 

yes if  name = first ( list )

guest ( name, rest ( list )) otherwise
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Comparisons



Program NameOnList  (Input, Output) ;

Type

ListType      = ^NodeType;

NodeType   = Record

First :  String;

Rest : ListType

End;

Var

List       : ListType;

Name    : String;

Procedure GetList (Var List: ListType);  . . .

Function Guest (Name : String;  List : ListType) : 
String;

Begin

If List = nil

Then Guest := ‘no’

Else If Name = List^.First 

Then Guest := ‘yes’

Else Guest := Guest  ( Name, List^.Rest) 

End;

Begin

Readln ( Name );

GetList ( List );

Writeln (Guest ( Name, List ) )

End .

Pascal



Program NameOnList  (Input, Output) ;

Type

ListType      = ^NodeType;

NodeType   = Record

First :  String;

Rest : ListType

End;

Var

List       : ListType;

Name    : String;

Procedure GetList (Var List: ListType);  . . .

Function Member (Name : String;  List : ListType) : 
String;

Begin

If List = nil

Then Member := ‘no’

Else If Name = List^.First 

Then Member := ‘yes’

Else Member := Member  ( Name, List^.Rest) 

End;

Begin

Readln ( Name );

GetList ( List );

Writeln (Member ( Name, List ) )

End .

Pascal

( define ( guest  name  list )

( cond

( ( empty?  list                               ‘no )

( ( equal?   name  ( first  list ))     ‘yes )

( else                            ( guest  name  ( rest  list ))  ) ))

Scheme



#include <#include <stdiostdio.h>.h>

typedef struct listCelltypedef struct listCell * list;* list;

struct listCellstruct listCell {{

int  int  first;first;

list rest;list rest;

};};

boolbool guestguest ((intint xx, list , list ll) {) {

if (l if (l == == NULLNULL))

return return false;false;

else if (x else if (x == == (l (l --> > first))first))

return return true;true;

elseelse

return return guest (x, l guest (x, l --> > restrest););

}}

intint main (main (int argcint argc, char **, char ** argvargv) {) {

list l1, l2, l3 = NULL;list l1, l2, l3 = NULL; int  int  x;x;

l1 = (list)l1 = (list) mallocmalloc ((sizeofsizeof ((struct listCellstruct listCell));));

l2 = (list)l2 = (list) mallocmalloc ((sizeofsizeof ((struct listCellstruct listCell));));

l2 l2 --> first = 3;  l2 > first = 3;  l2 --> rest = l3;> rest = l3;

l1 l1 --> first = 2;  l1 > first = 2;  l1 --> rest = l2;> rest = l2;

scanfscanf ("%d", &x);("%d", &x);

printfprintf ("%d("%d\\n", member (x, l1));n", member (x, l1));

}}

C or C++C or C++

( define ( guest  name  list )

( cond

( ( empty?  list                               ‘no )

( ( equal?   name  ( first  list ))     ‘yes )

( else                            ( guest  name  ( rest  list ))  ) ))

Scheme



Principles of Program Design



Principles of Program Design

• K.I.S.S.:  Keep It Simple Syntactically



Principles of Program Design

• K.I.S.S.:  Keep It Simple Syntactically

• D3:  Data Drive Design



Principles of Program Design

• K.I.S.S.:  Keep It Simple Syntactically

• D3:  Data Drive Design

• Recursion Is Natural



The Ping-Pong Game

9th Graders With

• Algebra I

• 12 Weeks of Scheme
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Curriculum Comparison

• introduction
• syntax
• Turbo Pascal, i/o
• numbers, strings
• simple arithmetic
• text files
• conditionals
• procedures, stubs

• algebra, functions
• conditionals
• design recipes
• symbols
• linked lists
• structures, records
• graphics
• lists containing lists



The Programming 
Environment

Salient DrScheme features:
• interactive evaluation
• immediate error-reporting with source 

highlighting
• language presented as a sequence of 

increasingly complex layers



Putting it in Context



What a University Saw

Universities like Rice admit some of the 
best students in the nation; yet, the 
students cannot

• develop a program systematically
• separate problem solving from machine 

details
• explain why a program works (or 

doesn’t)



What the ETS Wishes 
You Didn’t Know (~1998)

0
2
4
6
8
10
12
14
16
18

LibArts Univ Engg CompSci

Scheme C++ Older



Conclusion

• Computer science education is 
undergoing a revolution

• TeachScheme! is at the forefront

• Schools and universities must 
collaborate to reap the benefits



What We Offer

• Textbook (How to Design Programs)
• DrScheme programming environment
• Teacher’s guide
• Programming environment guide
• Exercises and solution sets
• Miscellany: help, summer course, etc

All available for free!



Web Information

See

http:/www.teach-scheme.org/

for information about the project, 
especially the free summer courses


