
The TeachScheme! Project

Adelphi University
Brown University

Northeastern University
University of Chicago

University of Utah
Worcester Polytechnic Institute

The Revolution

Two principles:

The Revolution

Two principles:

Shift away from machine details

The Revolution

Two principles:

Shift away from machine details

Emphasis on correctness over efficiency
(ie, focus on program design)

What’s Wrong with
Machine-Oriented Languages?

What’s Wrong with
Machine-Oriented Languages?

machine arithmetic, pointers and
memory addresses, even i/o

What’s Wrong with
Machine-Oriented Languages?

machine arithmetic, pointers and
memory addresses, even i/o

• Make students waste time on
unimportant and uninteresting details

What’s Wrong with
Machine-Oriented Languages?

machine arithmetic, pointers and
memory addresses, even i/o

• Make students waste time on
unimportant and uninteresting details

• Force students to confront issues they
are not prepared for

What’s Wrong with
Machine-Oriented Languages?

machine arithmetic, pointers and
memory addresses, even i/o

• Make students waste time on
unimportant and uninteresting details

• Force students to confront issues they
are not prepared for

• and ...

What Computer Science
is Not About

What Computer Science
is Not About

What Computer Science
is Not About

What Computer Science
is Not About

The computer!

Just as biology isn’t “microscope science”
and writing isn’t “pen science” ...

What’s This About
Program Design?

Why Am I Here?

• The TeachScheme! Project: Outreach
program hosted by six universities

• Specially designed for high schools

• Provides all material -- books, software,
etc -- free of charge

What Teachers Experience

K.I.S.S.
Keep It Simple Syntactically

K.I.S.S.
Keep It Simple Syntactically

C++/Pascal

10% Problem-solving vs 90% Syntax

K.I.S.S.
Keep It Simple Syntactically

C++/Pascal

10% Problem-solving vs 90% Syntax

Scheme

90% Problem-solving vs 10% Syntax

The Golden Rule of
Scheme Syntax

The Golden Rule of
Scheme Syntax

()

The Golden Rule of
Scheme Syntax

()Operation

The Golden Rule of
Scheme Syntax

()Operation List-of-Arguments

The Golden Rule of
Scheme Syntax

()Operation List-of-Arguments

or

(Operation Arg1)

The Golden Rule of
Scheme Syntax

()Operation List-of-Arguments

or

(Operation Arg1 Arg2)

The Golden Rule of
Scheme Syntax

()Operation List-of-Arguments

or

(Operation Arg1 Arg2 . . . Argn)

An Example From Arithmetic

4 + 5

An Example From Arithmetic

4 + 5

(Operation Arg1 Arg2)

4 + 5

(Operation Arg1 Arg2)

()

Example #1 (cont’d)

4 + 5

(Operation Arg1 Arg2)

(+)

Example #1 (cont’d)

4 + 5

(Operation Arg1 Arg2)

(+ 4)

Example #1 (cont’d)

4 + 5

(Operation Arg1 Arg2)

(+ 4 5)

Example #1 (cont’d)

4 + 5

(+ 4 5)

Example #1 (cont’d)

Another Arithmetic Example

(4 + 5) · 6

(4 + 5) · 6

()

Example #2 (cont’d)

(4 + 5) · 6

(*)

Example #2 (cont’d)

(4 + 5) · 6

(* (+ 4 5))

Example #2 (cont’d)

(4 + 5) · 6

(* (+ 4 5) 6)

Example #2 (cont’d)

(4 + 5) · 6

(* (+ 4 5) 6)

Example #2 (cont’d)

An Example From Algebra

4 + 5

An Example From Algebra

4 + 5

f (x) = x + 5

Example #3 (cont’d)

f (x) = x + 5

(Operation Arg1 Arg2)

Example #3 (cont’d)

f (x) = x + 5

(Operation Arg1 Arg2)

(
)

Example #3 (cont’d)

f (x) = x + 5

(Operation Arg1 Arg2)

(define
)

Example #3 (cont’d)

f (x) = x + 5

(Operation Arg1 Arg2)

(function-name input-name)

(f x)

Example #3 (cont’d)

f (x) = x + 5

(Operation Arg1 Arg2)

(define (f x)
)

Example #3 (cont’d)

f (x) = x + 5

(Operation Arg1 Arg2)

(output-rule)

(+ x 5)

Example #3 (cont’d)

f (x) = x + 5

(Operation Arg1 Arg2)

(define (f x)
(+ x 5))

Example #3 (cont’d)

f (x) = x + 5

(define (f x)
(+ x 5))

Algebra vs Scheme vs Pascal

Algebra vs Scheme vs Pascal

f (x) = x + 5

Algebra

Algebra vs Scheme vs Pascal

f (x) = x + 5

Algebra

(define(define (f x)

((+ x 5))))

Scheme

Algebra vs Scheme vs Pascal

f (x) = x + 5

Algebra

(define(define (f x)

((+ x 5))))

Scheme

ProgramProgram f (Input, Output) (Input, Output) ;;

VarVar

x x :: Integer Integer ;;

BeginBegin

ReadlnReadln (x) ;;

WritelnWriteln ((x + 5))

End End ..

Pascal

Design

D3: Data Drive Design
(A Non-Numeric Example)

Consider program guest, which determines

whether a friend’s name is in a party’s

invitation list.

Is Mathilde In The List?

Is Mathilde In The List?

No

Is Mathilde In The List?

No

Mathilde

. . .

Is Mathilde In The List?

No

Mathilde

. . .

Yes

Is Mathilde In The List?

No

Mathilde

. . .

Yes

John

. . .

Is Mathilde In The List?

No

Mathilde

. . .

Yes

John

. . .

Look in the Rest of the List

Is Mathilde In
The Rest of the List?

Is Mathilde In
The Rest of the List?

No

Is Mathilde In
The Rest of the List?

No

Mathilde

. . .

Is Mathilde In
The Rest of the List?

No

Mathilde

. . .

Yes

Is Mathilde In
The Rest of the List?

No

Mathilde

. . .

Yes

Sherry

. . .

Is Mathilde In
The Rest of the List?

No

Mathilde

. . .

Yes

Sherry

. . .

Look in the Rest of the List

Pattern To Algebra

guest (name, list) =

Algebra

guest (name, list) =

Algebra

guest (name, list) =

if list is empty

Algebra

guest (name, list) =

no if list is empty

Algebra

guest (name, list) =

no if list is empty

if name = first (list)

Algebra

guest (name, list) =

no if list is empty

yes if name = first (list)

Algebra

guest (name, list) =

no if list is empty

yes if name = first (list)

otherwise

Algebra

guest (name, list) =

no if list is empty

yes if name = first (list)

guest (name, rest (list)) otherwise

Algebra

Scheme

(define (guest name list)

)

guest (name, list) =

Algebra

Scheme

(define (guest name list)

)

guest (name, list) =

Algebra

Scheme

(define (guest name list)

(cond

))

guest (name, list) =

Algebra

guest (name, list) =

if list is empty

if name = first (list)

otherwise

Algebra

Scheme

(define (guest name list)

(cond

))

Scheme

(define (guest name list)

(cond

()

()

()))

guest (name, list) =

if list is empty

if name = first (list)

otherwise

Algebra

Scheme

(define (guest name list)

(cond

((empty? list))

((equal? name (first list)))

(else)))

guest (name, list) =

if list is empty

if name = first (list)

otherwise

Algebra

Scheme

(define (guest name list)

(cond

((empty? list) ‘no)

((equal? name (first list)) ‘yes)

(else (guest name (rest list)))))

guest (name, list) =

no if list is empty

yes if name = first (list)

guest (name, rest (list)) otherwise

Algebra

Did You Notice?

Scheme

Algebra

(define (guest name list)

(cond

((empty? list) ‘no)

((equal? name (first list)) ‘yes)

(else (guest name (rest list)))))

guest (name, list) =

no if list is empty

yes if name = first (list)

guest (name, rest (list)) otherwise

Recursion Is Natural

Comparisons

Program NameOnList (Input, Output) ;

Type

ListType = ^NodeType;

NodeType = Record

First : String;

Rest : ListType

End;

Var

List : ListType;

Name : String;

Procedure GetList (Var List: ListType); . . .

Function Guest (Name : String; List : ListType) :
String;

Begin

If List = nil

Then Guest := ‘no’

Else If Name = List^.First

Then Guest := ‘yes’

Else Guest := Guest (Name, List^.Rest)

End;

Begin

Readln (Name);

GetList (List);

Writeln (Guest (Name, List))

End .

Pascal

Program NameOnList (Input, Output) ;

Type

ListType = ^NodeType;

NodeType = Record

First : String;

Rest : ListType

End;

Var

List : ListType;

Name : String;

Procedure GetList (Var List: ListType); . . .

Function Member (Name : String; List : ListType) :
String;

Begin

If List = nil

Then Member := ‘no’

Else If Name = List^.First

Then Member := ‘yes’

Else Member := Member (Name, List^.Rest)

End;

Begin

Readln (Name);

GetList (List);

Writeln (Member (Name, List))

End .

Pascal

(define (guest name list)

(cond

((empty? list ‘no)

((equal? name (first list)) ‘yes)

(else (guest name (rest list)))))

Scheme

#include <#include <stdiostdio.h>.h>

typedef struct listCelltypedef struct listCell * list;* list;

struct listCellstruct listCell {{

int int first;first;

list rest;list rest;

};};

boolbool guestguest ((intint xx, list , list ll) {) {

if (l if (l == == NULLNULL))

return return false;false;

else if (x else if (x == == (l (l --> > first))first))

return return true;true;

elseelse

return return guest (x, l guest (x, l --> > restrest););

}}

intint main (main (int argcint argc, char **, char ** argvargv) {) {

list l1, l2, l3 = NULL;list l1, l2, l3 = NULL; int int x;x;

l1 = (list)l1 = (list) mallocmalloc ((sizeofsizeof ((struct listCellstruct listCell));));

l2 = (list)l2 = (list) mallocmalloc ((sizeofsizeof ((struct listCellstruct listCell));));

l2 l2 --> first = 3; l2 > first = 3; l2 --> rest = l3;> rest = l3;

l1 l1 --> first = 2; l1 > first = 2; l1 --> rest = l2;> rest = l2;

scanfscanf ("%d", &x);("%d", &x);

printfprintf ("%d("%d\\n", member (x, l1));n", member (x, l1));

}}

C or C++C or C++

(define (guest name list)

(cond

((empty? list ‘no)

((equal? name (first list)) ‘yes)

(else (guest name (rest list)))))

Scheme

Principles of Program Design

Principles of Program Design

• K.I.S.S.: Keep It Simple Syntactically

Principles of Program Design

• K.I.S.S.: Keep It Simple Syntactically

• D3: Data Drive Design

Principles of Program Design

• K.I.S.S.: Keep It Simple Syntactically

• D3: Data Drive Design

• Recursion Is Natural

The Ping-Pong Game

9th Graders With

• Algebra I

• 12 Weeks of Scheme

Curriculum Comparison

• introduction
• syntax
• Turbo Pascal, i/o
• numbers, strings
• simple arithmetic
• text files
• conditionals
• procedures, stubs

Curriculum Comparison

• introduction
• syntax
• Turbo Pascal, i/o
• numbers, strings
• simple arithmetic
• text files
• conditionals
• procedures, stubs

• algebra, functions
• conditionals
• design recipes
• symbols
• linked lists
• structures, records
• graphics
• lists containing lists

The Programming
Environment

Salient DrScheme features:
• interactive evaluation
• immediate error-reporting with source

highlighting
• language presented as a sequence of

increasingly complex layers

Putting it in Context

What a University Saw

Universities like Rice admit some of the
best students in the nation; yet, the
students cannot

• develop a program systematically
• separate problem solving from machine

details
• explain why a program works (or

doesn’t)

What the ETS Wishes
You Didn’t Know (~1998)

0
2
4
6
8
10
12
14
16
18

LibArts Univ Engg CompSci

Scheme C++ Older

Conclusion

• Computer science education is
undergoing a revolution

• TeachScheme! is at the forefront

• Schools and universities must
collaborate to reap the benefits

What We Offer

• Textbook (How to Design Programs)
• DrScheme programming environment
• Teacher’s guide
• Programming environment guide
• Exercises and solution sets
• Miscellany: help, summer course, etc

All available for free!

Web Information

See

http:/www.teach-scheme.org/

for information about the project,
especially the free summer courses

